
Diagrams and Languages for

Model-Based Software Engineering

of Embedded Systems:

UML and AADL

Dionisio de Niz

dionisio@sei.cmu.edu

Even after years of research and practice in computer science and, in par-

ticular, in software engineering, software projects are still largely risky and

unpredictable. There is significant evidence to support this observation.

Consider, for instance, a NIST (National Institute of Standards and Tech-

nology) study in 2002 that found software errors cost the U.S. economy

$59.5 billion annually, about 0.6 percent of the national gross domestic

product [NIST 2002].

Based on that total, software users and developers pay more because of

error-ridden software than gamblers do at the slot-machines and tables in

Las Vegas, Atlantic City, and all other commercial venues that provide

gaming. Gamblers accept the risk associated with the roll of a dice; soft-

ware users should not have to.

It is not that developers do not apply resources to discovering and fixing

errors. They do. The same NIST study reported that nearly 80% of the

money spent in development goes to correcting defects. Yet, software,

unlike almost any other product, is provided to customers with a high-level

of errors [NIST 2002].

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 2007 2. REPORT TYPE

3. DATES COVERED
 00-00-2007 to 00-00-2007

4. TITLE AND SUBTITLE
Diagrams and Languages for Model-Based Software Engineering of
Embedded Systems: UML and AADL

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University ,Software Engineering Institute
(SEI),Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

10

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

DIAGRAMS AND LANGUAGES FOR MODEL-BASED SOFTWARE

ENGINEERING OF EMBEDDED SYSTEMS: UML AND AADL

One recent study to uncover the causes of software project risk was per-

formed by the Committee on Certifiably Dependable Software Systems of the

National Academy of Sciences (NAS) [NAS 2007]. Two of their key obser-

vations have a strong impact on the purpose of model-based software engi-

neering:

1. In software development, there is no substitute for simplicity. While diffi-

cult to achieve, simplicity is worth the cost. One way to achieve simplicity

is to develop high-level software structures that limit the complexity of

interactions among components. Such structures are known as software

architecture.

2. The behavior of the software goes beyond the software itself to involve the

environment with which it interacts. This environment includes hardware

and the physical world. Hence, any property of the software is, in part,

defined by assumptions made about it by the environment. Furthermore,

any claim on the software needs to be explicit and unambiguous and cap-

tured in the proper form to enable automated analysis.

It is worth noting that the need for the automated analysis of claims has a two-

fold benefit. On the one hand, it enables the designer to cope with a level of

complexity that humans cannot handle (but machines can). And on the other

hand, automated analysis removes human interpretation from the verification

of claims—and in so doing eliminates the possibility of ambiguity.

MBE tools support
the automated
analysis of software
system architecture

Model-based engineering (MBE) tools for software engineering recognize

the importance of architecture and automated analysis. The tools we compare

in this discussion, the Unified Modeling Language (UML) and the Architec-

ture Analysis and Design Language (AADL) facilitate the modeling of soft-

ware architecture and provide elements to understand it.

BASIC COMPARISON

UML provides a set of diagrams to depict software structures graphically.

These diagrams appeal to practitioners and help them tackle complex soft-

ware structures. However, while its individual diagrams are useful to depict

software structures, UML cannot fully define the relationships between dia-

grams. The diagrams are developed as separate entities that express different

aspects of the software, not as parts of a common construct. As a result, the

consistency across diagrams is largely left to be resolved by the designer.

Notwithstanding that issue, UML has been broadly adopted due to the way it

reflects the concerns and communications needs of programmers and soft-

ware designers.

AADL comes from a computer language tradition, rather than a dia-

grams tradition. AADL, like its predecessor MetaH, produces language-

based modeling artifacts. AADL was developed as a programming language

3

not only to define the textual representation of software architecture but also

(and more importantly) to formally define the syntax and semantics. (In addi-

tion to textual representation, AADL allows the software designer to depict

the system graphically.)

System designers
can use UML to
diagram functional
structures, and
AADL to define
runtime behavior

As a result, descriptions in AADL comply with the syntax and semantics of

the language and can be verified by the syntactic and semantic analyzer of the

language to ensure that the description is analyzable and consistent. In other

words, constructs in a model are checked by the compiler to verify that they

are “legal” (e.g., a thread cannot contain processes). They are also assessed

for correctness (e.g., defining a periodic thread that does not have specified

period). Verification of the description happens in the same fashion a com-

piler checks that a program is properly structured, consistent, and semanti-

cally correct to be able to produce executable code.

Any software description in AADL is analyzable and has an unambiguous

interpretation (as a program would have for a compiler). Analyses are built

on top of the language constructs, further the emphasis on unambiguous inter-

pretation.

A summary of the basic comparison between AADL and UML can be seen

in Table 1.

HOW UML AND AADL ACCOMMODATE EXTENSIONS

Both UML and AADL provide extensions to accommodate new constructs

for the modeling artifacts.

UML Extension Mechanisms

UML has three extension mechanisms:

1. stereotypes

2. tagged values

3. constraints

Table 1. Basic Comparison of UML and AADL

UML AADL

Origin Diagrams tradition Language tradition

Purpose Depict functional
structures

Define runtime behavior

Representation Diagrams; graphic Textual and graphic

Verification --- Automated analysis

Current Domains
of Use

Software, business proc-
esses, and many others

Embedded and real-time soft-
ware system

DIAGRAMS AND LANGUAGES FOR MODEL-BASED SOFTWARE

ENGINEERING OF EMBEDDED SYSTEMS: UML AND AADL

These mechanisms are typically bundled together in a profile that represents

a modeling dialect for a specific purpose.

Stereotypes are new model elements derived from core ones. These stereo-

types can later be applied to UML model elements to identify them as these

special elements. Stereotypes can have special attributes. In addition, stereo-

types can be associated with a special graphical element.

Tagged values are properties that associate keyword-value pairs to model ele-

ments. They are used to extend the description of elements with annotations

for a specific purpose of the profile.

Finally, constraints are restrictions that are expressed in a special language

called object constraint language (OCL). These restrictions allow the specifi-

cation of semantic restriction for the construction of models, taking the role

of what a syntactic and semantic analysis does in a compiler (e.g., restricting

an invoice to be associated with only one client). The consistency of the rule

in OCL is in the hands of the designer of the profile.

AADL Extension Mechanisms

AADL provides an extension construct called annex to add complementary

description elements for different kinds of analysis not covered with the core

elements. These annexes are embedded in descriptions of the core language

and can make references to constructs in it. Annexes are language extensions,

which means that, along with the annex, a compiler is built to analyze annex

submodels for syntactic and semantic integrity. The defining of annexes is

standardized to assure completeness and consistency.

AADL analysis tools, such as the Open Source AADL Tool Environment

(OSATE), implement annexes as parsers, name resolvers, and semantic

checkers. They extend the basic checking of the core language and are used

in a cascading integrated compilation process to provide full consistency ver-

ification.

Along with the annexes, the AADL defines property set extensions. In a way,

property set extensions in AADL are similar to the tagged values of UML.

However, because they live in the language, property set extensions offer the

possibility to refer to other language constructs, define their types (e.g., real,

integer, range of integers), or extend other properties (e.g., the Period of a

thread extends the Time property type).

5

The comparison of the extension mechanisms is summarized in Table 2..

WHAT UML AND AADL FOCUS ON

UML was conceived as a way to model functional structures of software;

AADL, to model and analyze runtime architecture. As both have been more

widely adopted, they have been used in areas that complement their core

areas of use.

UML Core Focus

UML focuses on three aspects of the functional structures: data, interaction,

and evolution.

• The data is modeled in class diagrams. Classes are central pieces of data
modeling in UML.

• Interaction is modeled with a sequence diagram or a collaboration dia-
gram. Thee diagrams describe how classes interact to achieve a specific
task of the application.

• Evolution in this context defines the modeling that explicitly describes
states of the systems and their transitions. Evolution is typically modeled
with state diagrams embedded in objects.

While UML offers other diagrams, classes, sequence, and state diagrams

strongly define the main functional structure of the software.

Table 2. Summary of Extension Mechanisms

UML or AADL Type Purpose

UML Stereotype New model elements derived from
core ones

Tagged Value Properties that associate a key-
word-value pair to an element or
more than one element

Constraint Semantic restriction for model con-
struction

AADL Standard annex Language extension

Property set extension Project-specific construct

DIAGRAMS AND LANGUAGES FOR MODEL-BASED SOFTWARE

ENGINEERING OF EMBEDDED SYSTEMS: UML AND AADL

UML Extended Areas of Use

SysML and the
MARTE profile are
extending the use
of UML diagrams
into embedded and
real-time system
design

Recently, the UML community has been working on enabling multiple anal-

yses to prove properties of the modeled system. Two of these efforts related

to embedded systems are SysML and the MARTE (Modeling and Analysis

of Real-Time and Embedded systems) profile. SysML allows the capturing

of the interactions with the physical world in a mathematical model and the

verification of properties on it. MARTE is intended to add modeling capabil-

ities to verify real-time properties such as timeliness and schedulability.

SysML provides two fundamentally new diagrams:

1. requirements diagram

2. parametric diagram

These extensions modify the core diagrams instead of using the extension

mechanisms (i.e., stereotypes, tagged values, and constraints). The require-

ments diagram supports a stronger focus on requirements and traceability.

The parametric diagram expresses the relationship between the software and

the environment.

Using the parametric diagram, a designer can model the software-environ-

ment relationship mathematically to verify, for instance, whether the software

can control the environment or other properties. However, the modeling with

parametric diagrams is focused on continuous time where computations are

instantaneous. This focus turns to a disadvantage when the ideal model is

translated into real executable software, where non-instantaneous execution

jeopardizes the validity of the analyses.

The purpose of the MARTE profile is to enable the analysis of real-time

properties using the rate-monotonic theory and code generation in the pres-

ence of different operating systems. In MARTE, multiple stereotypes are

defined. The new stereotypes specify elements to model three aspects:

1. software resource model

2. hardware resource model

3. the allocation of the software model to the hardware model

This resource modeling is based on the rate-monotonic theory and includes a

mapping between a generic OS API1 and specific OS APIs to be able to gen-

erate code automatically. Using MARTE, a designer models the system with

multiple functional, runtime, and hardware diagrams. Then, connections

between the diagrams are used to model the allocation of entities from one

diagram to another. However, the consistency between these diagrams is left

to the designer.

1. Operating System Application Programming Interface

7

The MARTE profile incorporates experience from the AADL community

with respect to modeling the runtime and hardware architectures. Further-

more, some members of the AADL standard committee are on the MARTE

committee.

AADL Core Focus

Focused on the
unambiguous
specification and
analysis of runtime
architecture, the
AADL has been
extended through
error model and
behavioral annexes

The core focus of AADL is runtime architecture modeling and analysis.

Runtime architecture is the software structure that defines the final execution

sequence of instructions. This structure is defined by threads, processes, pro-

cessors, and their interactions (data, event, and event data communication)

that encapsulate the functional modules that they execute. Runtime architec-

ture provides the software system with specific quality attributes such as

timeliness, fault-tolerance, or security.

AADL language semantics, enforced by compilation techniques, provide a

clear execution semantics that is defined as a hybrid automaton in the stan-

dard document. A hybrid automaton is a mathematical model for describing

how software and physical processes interact. The AADL hybrid automaton

defines, unambiguously, the specific combinations of events that trigger or

stop the execution of the different elements of the model. These combinations

can be due to interactions or the passage of time.

This execution model in AADL encodes the most effective structures used by

embedded systems developers and assumed by the theory of real-time sys-

tems. For instance, it encodes periodic and aperiodic threads, periodic data

sampling, state variable communications, event-based transfer of control, and

isolation strategies for memory and time such as the ones found in partition

architectures in the style of ARINC 653 [ARINC 653 2003].

AADL Extended Areas of Use

Two AADL annexes (extensions) have expanded the capabilities of AADL:

the error annex and the behavioral annex. The error annex enables the

detailed, state machine description of potential errors in the architecture, on

which a designer can create theoretically strong models such as Markov

claims. The behavioral annex permits the description of functional behavior

to enable formal verification in the style of model checking.

The error and the behavioral annexes are now standard annexes to the lan-

guage. However, the flexibility of the annex mechanism allows the designer

to add precise extensions based on need. For example, tool developers at the

Carnegie Mellon1® Software Engineering Institute (SEI) have developed

multiple experimental analyses for AADL models that include project-spe-

cific annexes for different domains such as security and fault propagation.

1. Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon Univer-
sity.

DIAGRAMS AND LANGUAGES FOR MODEL-BASED SOFTWARE

ENGINEERING OF EMBEDDED SYSTEMS: UML AND AADL

The summary of the comparison of the areas of use for UML and AADL is

presented in Table 3.

HOW UML AND AADL ARE COMPLEMENTARY

In their core purposes, UML and AADL are complementary. UML focuses

on the functional structures of software abstracted from the runtime architec-

ture. AADL, on the other hand, focuses on the runtime architecture, while the

functional structure is extracted away.

As a result, a system designer can exploit the strengths of both, using them in

complementary roles. The SEI, in collaboration with Kennedy-Carter Ltd.,

has developed a mapping between xUML and AADL [ICECCS 2007].

(xUML is a form of UML with executable semantics.) In this mapping,

xUML is used to model the functional structures in what is called the Plat-

form Independent Model (PIM), and AADL is used to describe the runtime

architecture in what is called a Platform Specific Model (PSM).

The PIM model which defines how data is transformed through the system,

does not specify the timing of such transformations, the effect of distributing

these transformation to multiple processors, or how the failure of one proces-

sor can affect them. For this purpose, AADL is used in the PSM model. In

this model, the semantics of AADL allows the designer to clearly model

when transformations happen in parallel (e.g., the antilock brake system

[ABS] module monitors the locking of wheels while the fuel module controls

the mixture of fuel and air in the engine), when such transformations need to

be redundant (e.g., having two computers to monitor the brakes, so if one

dies, the other can continue to work seamlessly), or when they need to be iso-

lated from other applications (e.g., the DVD system and the ABS should be

in different computers, so that a bug in one would not stop the other).

Table 3. Focus Areas

UML or AADL Core Area Extended Areas

UML Functional structures Analysis through SysML and
MARTE

AADL Runtime architecture mode-
ling and analysis

Error handling through error
model annex; formal verifica-
tion through behavioral annex

9

UML AND AADL: TOGETHER FOR HIGHER PRODUCTIVITY

Though they differ
significantly, UML
and AADL can be
used together
effectively to
improve the
predictability of
real-time and
embedded systems

UML diagrams, with their communication strength, used in conjunction with

AADL modeling and analysis, with their precision for runtime architecture,

create a powerful combination to improve predictability in the development

of embedded and real-time systems. In particular, they can lessen risk in cru-

cial aspects of embedded and real-time systems through the

• physical modeling capabilities (and potential for automated analysis) of
SysML

• functional modeling of UML

• runtime architectural modeling of AADL (and its analysis capability) and
MARTE

• error annex of AADL

In turn, lowered risk can turn into savings for individuals and organizations.

The NIST study that pegged the annual cost of software errors at $59.5 billion

also asserted that an estimated $22.2 billion of that amount could be saved

with improved “testing infrastructure that enables earlier and more effective

identification and removal of software defects” [NIST 2002]. Modeling and

analysis, using UML and AADL, can provide designers with crucial insight

into software structure and behavior.

REFERENCES

[ARINC 653 2003]

Lynuxworks. ARINC 653 (ARINC 653-1). http://www.lynuxworks.com/solu-

tions/milaero/arinc-653.php (2003).

[ICECCS 2007]

Feiler, Peter H., de Niz, Dionisio, Raistrick, Chris, & Lewis, Bruce A. “From

PIMs to PSMs,” 365–370. 12th IEEE International Conference on Engineer-

ing Complex Computer Systems (ICECCS 2007). Auckland, New Zealand,

July 2007. http://doi.ieeecomputersociety.org/10.1109/ICECCS.2007.25

[NAS 2007]

Jackson, Daniel, Thomas, Martyn, & Millett, Lynette I., Eds. Software for

Dependable Systems: Sufficient Evidence? Washington, D.C.: National

Academies Press, 2007. http://books.nap.edu/catalog.php?record_id=11923

[NIST 2002]

National Institute of Standards and Testing. Planning Report 02-3: The Eco-

nomic Impacts of Inadequate Infrastructure for Software Testing (May 2002))

(RTI Project Number 7007.011). Research Triangle Park, NC: RTI, 2002.

http://www.nist/gov/public_affairs/releases/n02-10.htm

The Software Engineering Institute (SEI) is a federally funded research and

development center sponsored by the U.S. Department of Defense and

operated by Carnegie Mellon University.

